Minimum Cost Assignment of Crews
to Meet Tracking Requirements
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A model of the tracking constraints, maintenance constraints, labor constraints,
and labor costs of a DSN complex is made. The problem of minimizing the labor
cost while satisfying the constraints is solved. Minimum cost schedules for all cases
of interest are given. Modifications of the model are suggested.

l. Introduction

This report gives a solution, subject to simplified assump-
tions, to the management science problem of scheduling
the spacecraft tracking, station maintenance, and crew
shifts at a DSN tracking complex. Section II defines the
problem precisely, but here is an overview: assume we
have a complex with 1 to 4 stations. There are 0 to 5
spacecraft to be tracked at that complex. Each spacecraft
pass lasts 12 hours and must be tracked in its entirety by
one and only one station, or not at all. (Four hours of
pre- and post-calibration are included.) In this version of
the problem, rises and sets are synchronized with each
other modulo 12 hours and are constant from day to day.
Each station requires 16 hours per week of maintenance
subject to certain constraints, and must be open at least
40 hours a week. Work crews (whose number is not pre-
determined) are to be assigned the above duties. Their
schedules are governed by constraints imposed by labor
laws, sound personnel practice, and the mechanics of the
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situation. The problem is to schedule tracking, mainte-
nance, and crew assignments in such a way that the labor
cost is minimized, while meeting the various constraints.

The general case of the problem is labeled Case (i, j), n;
this means that there are n stations, i spacecraft up during
one 12-hour period of each day, and j spacecraft up dur-
ing the other 12-hour period. We can always assume
j < i. The restriction 0 <i + j < 5 gives rise to 12 space-
craft configurations: (0,0), (1,0), (2,0), (1,1), (3,0), (2,1),
(4,0), (3,1), (2,2), (5,0), (4,1), (3,2). Since there are 1, 2,
3, or 4 stations, the problem has 4(12) = 48 different
cases. In order to generalize, however, we will also con-
sider cases with more than 5 spacecraft or 4 stations.
From now on, the original cases of the problem will be
called the “lower 48 cases.”

Minimum cost schedules for all the lower 48 cases are
given in Appendix C. But the purpose of this report is not
just to solve these particular problems, for the constraints
are perhaps not yet realisic enough for these schedules to
be usable in the field without modification. Rather, the
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solution techniques will prove adaptable to similar DSN
scheduling problems, but in realistic situations.

After stating the problem (Section II), we show that
solutions always exist (Section III). Section IV gives an
algorithm that computes a lower bound for the cost of a
most economical schedule. The bound is actually attained
in the lower 48 cases by the schedules in Appendix C.
Construction of schedules is still partly ad hoc, but it is
possible to give some guidelines (Section V). In any case,
some schedule,can be made, whether or not it is a cheap-
est one; its cost then certainly provides an upper bound
for the minimum cost.

Il. Description of the Model

A. Constraints

There is a DSN complex with n stations, n > 1. There
are i + f spacecraft up, 0 < j < i. The first i spacecraft rise
at midnight and set at noon. The other j rise at noon and
set at midnight, We will call this Case (4, f), n.

(1) All schedules are periodic with period one week.

(2) The complex is manned by an indeterminate num-
ber of crews, cach crew to be treated as a single
indivisible unit. A crew works only 8- or 10-hour
shifts. Possible work weeks are 40, 42, 44, 46, or
48 hours. Any crew can work at any station, but a
crew must not switch stations during a shift. No
more than two crews can be at one station at the
same time. Starting times for consecutive shifts of
the same crew must be at least 24 hours apart.

If work (tracking or maintenance) is being done at
a station, then at least one crew is present. We
allow crews to be on duty at a station but not work-
ing (in this mathematical sense).

(3) Each station must be open, with a crew, at least
40 hours a week.

(4) If a particular spacecraft is tracked at all during a
pass, then it is to be tracked by one, and only one,
station during its entire 12-hour pass. Any one sta-
tion is allowed to track no more than 13 passes a
week. (Fourteen arc available but are regarded as
an overload.)

(5) Each station must receive at least 16 “units” of main-
tenance a week. (The notion “unit” will be identi-
fied subsequently.) At each station, at least 12 hours
must be spent on maintenance while the station is
not tracking.
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If the station is not tracking, and a single crew does
maintenance (another crew could be present but
idle), then each crew hour accomplishes 1 unit of
maintenance. We say that the crew works with
efficiency 1.

If tracking and maintenance are simultancous at a
station, then two crews are present, one tracking,
the other doing maintenance. The crew that is
doing maintenance has efficiency 2/3, that is, each
crew hour accomplishes 2/3 units of maintenance.
(The crew doing the tracking has priority, and is
allowed to interfere with the maintenance crew;
the latter’s efficiency is therefore reduced.)

If two crews are at a station and both are doing
maintenance, then no tracking occurs, and each
crew has efficiency 2/3 again, so that both crews
working for an hour accomplish 4/3 unit of main-
tenance. (The crews work at less than double effi-
ciency because they interfere with each other.)

(6) Maintenance on each station must be done in
“blocks.” A block is a time interval of uninter-
rupted maintenance composed of x hours at effi-
ciency 1, y hours by a single crew at efliciency 2/3,
and z hours by two crews at efficicncy 2/3, where
x + (2/3)y + z > 4. (Observe that we have z, not
(4/3)z. In this case, x + (2/3)y + (4/3)z units of
maintenance get done. (It has been found that this
job cannot adequately be done in short time blocks.
The multiplicr 4/3 is removed from z in order that
a block always be at least 4 hours, not just 4 units.)

This completes the list of constraints.

B. Costs

Each crew is paid time and one quarter for work be-
yond 40 hours. (We consider that half the crew is “exempt”
and gets straight time, while the other half gets time and
a half.) Thus a (40 + 2k)-hour work week is assigned a
cost 40 + (5/2)k, k=0, 1, 2, 38, 4.

C. The Problem

Given the spacecraft configuration and the number of
stations. If it is possible to track all spacecraft passes
while satisfying all constraints, devise a minimum cost
schedule of tracking, maintenance, and crew assignments
that does so. If not all the passes can be tracked, find the
maximum number of passes that can be tracked with the
constraints still satisfied. Then find a minimum cost sched-
ule that achieves this maximum.
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ill. Existence of Solutions

Let there be given n stations and i + j spacecraft. From
now on, a schedule of tracking, maintenance, and crew
assignments that meets the constraints will be called
simply a “schedule.” We will soon sec that schedules
always cxist. Any schedule tracks a whole number of
passcs; consider the nonempty sct S of schedules that track
the maximum possible number of passes. Since the cost of
a (40 + 2k)-hour work week is (5/2) (16 + k), the cost of
any schedule is an integer multiple of 5/2. Therefore,
there exist schedules in § that are cheapest.

It is a priori possible that the problem of finding the
maximum possible amount of tracking is mixed inextric-
ably with the maintenance and labor constraints, that a
given tracking schedule cannot necessarily be completed
to a schedule. Fortunately, this is not the case.

PrOPOSITION 1. Given a tracking schedule that satisfies
Constraints 1 and 4. There exists a schedule of mainte-
nance and crews that satisfies all the other constraints.

Proof. If a given station is tracking fewer than 13 passes
a week, then therc are at least two 12-hour gaps in its
tracking schedule. In these gaps, place a total of 16 hours
of maintenance in blocks of at least 4 hours. Then sched-
ule 4 crews, a, b, ¢, d, to this station as in Fig. 1. (We fill
up the whole week even if the duty schedules do not de-
mand it; since we are only proving cxistence we can be
very wasteful—temporarily!) Call this a “row” of crews.

If a given station is tracking 13 passes a week, there is
only one 12-hour gap in its schedule. Fill this gap with
maintenance. Place a 6-hour block of maintenance any-
where else, to be performed simultaneously with tracking.
This will yield 4 more units of maintenance. Now assign
two separate rows of crews, each scheduled as in Fig. 1.
Thus at all times there are two crews at the station. (The
second crew does nothing, except during the 6-hour block
of maintenance at efficiency 2/3; we said we would be
wasteful.)

After carrying out this procedure for all stations, the
reader can verify that all constraints are met.

It follows that to determine the maximum number of
passes that can be tracked, we need consider only Con-
straints 1 and 4; this part of the problem can be solved
first, without considering maintenance and crews.
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IV. Computation of Cost Lower Bounds

Suppose that we find a lower bound for the costs of all
schedules that maximize tracking. Suppose that we can
construct a schedule that costs exactly this much. Then
we have a minimum cost schedule. This we were able to
do for all the lower 48 cases. If, for any rcason, we had
been unable to make a schedule whose cost equals the
lower bound, but were able to make a higher-cost sched-
ule, then at least we would have had both upper and
lower bounds for the minimum cost.

We have no algorithm for finding minimum cost sched-
ules in the general Case (i, §), n. However, we have pre-
pared a structured flow chart (Figs. 2, 3, 4) that includes
an algorithm for computing the maximum number of
passes that can be tracked and a cost lower bound. This
bound is valid for the general case and is sharp for the
lower 48 cases.

The top of the flow chart, Boxes 1, 2, 3, 4, computes the
maximum number p of passes that can be tracked. From
then on, we consider only schedules that track this many
passes. The total number of tracking hours is then 12p.

Next comes the task of finding a lower bound for the
number of crew hours that have to be paid for. Given a
schedule that tracks p passes, let p; be the number of
passes tracked by Station k, k = 1,2,---, n. Then p = Sp;.
Each station needs at least 16 units of maintenance. Since
each crew hour results in 1 hour of tracking, 1 unit of
maintenance, 2/3 units of maintenance, or nothing, the
number of crew hours spent at Station k is at least
12py, + 16. Therefore, a lower bound for total crew hours
is X(12p; -+ 16) = 12p + 16n. Let us call this the basic
hours lower bound.

Often, an hours lower bound greater than the basic one
can be found. If at least 12p; + 16 + ¢; crew hours are
worked at Station k, then the whole schedule has at least
12p + 16n + ¢, crew hours. In some cases, we can show
that 3¢, is bounded below by some positive number.

After getting an hours lower bound, we compute the
cost of the cheapest collection of work weeks such that
the total hours worked is not less than the hours lower
bound. The resulting cost must be a lower bound for the
cost of any actual schedule.

The following paragraphs, keyed to the flow chart box
numbers, explain the algorithm in detail.
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Box 1. There are only n stations, so no more than n
passes can be tracked at one time. If either i or j is greater
than n, we can replace it by n and solve this new case.
Then we will have done our best for the original case; we
need only say which passes go untracked. So from now
on, assume j <i < n.

Boxes 2, 3, 4. By Constraint 4, a total of no more than
13n passes a week can be tracked. The number of space-
craft passes is 7(i + j). Hence, the largest number p of
passes that can be tracked cannot exceed the smaller of
13nand 7(i + j). Fortunately, this upper bound is attained.

PROPOSITION 2. Assume j < i < n. There exists a schedule
that tracks exactly minimum (13n, 7(i + {)) passes.

Proof, By Proposition 1, we need only make a tracking
schedule that meets Constraints 1 and 4.

Assume 7(i + {) < 13n. For the first half of each day,
we can relax a set of n — i stations; for the second half,
a set of n — j stations. By the end of the week we have
relaxed 14 sets of stations. Since the above inequality can
be written 7(n — i) + 7{(n — j) > n, we can determine the
sets so that their union is the set of all n stations. Then
each station has been relaxed for at least one half-day,
and all passes have been tracked.

Assume 7 (i +7) > 18n. Then 7(n — i) + 7(n —§) < n.
We can make the sets of relaxed stations disjoint. Then
7(n — i) +7(n — j) stations have been relaxed exactly
once, and tracking has been scheduled for all 7(i + )
passes. But there remain n —7(n — i) — 7(n —j) =
7(i + §} — 13n stations that need to be relaxed. Their
relaxation periods can be stolen from the 7 (i + j) passes
that have just been scheduled. This leaves 7 (i + §)
= [7(i +{) — 13n] = 13n passes tracked.

If 7(i +4)<13n then p=T7(i+74). If 7(+j) > 13n,
then p = 13n, and we will immediately establish an hours
lower bound better than the basic one, which is 156n
+ 16n = 172n. Each station has only one 12-hour period,
or “gap,” in which it is not tracking. By Constraint 5,
there are no more than 12 crew hours spent on mainte-
nance at efficiency 1, for such must take place when there
is no tracking. To reach 16 units of maintenance, at least
6 crew hours must be spent at efliciency 2/3. Therefore,
at least 18 crew hours per station are spent on mainte-
nance. Since tracking takes up 12 (13) = 156 crew hours,
each station accounts for at least 174 crew hours. There-
fore, 174n is an hours lower bound.
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Boxes 5, 6. At this point, all the 7 (i + ) passes can be
tracked, and the basic hours lower bound is 84 (i + §)
+ 16n. Even so, some stations may still have only one
relaxation period. Assume 12n < 7 (i + §) < 13n. The
number of relaxation periods is 14n — 7 (i +§). If s is
the number of stations with only one relaxation period,
then the other n — s stations have at least 2 relaxation
periods. Therefore, 14n — 7 (i + ) > s + 2(n —s), ie,
§>T(i+{)— 12n. Let 8 =7(i - j) — 12n. There exist
§’ stations with one relaxation period. Each of these sta-
tions accounts for at least 174 crew hours, but contributes
only 12 (13) + 16 = 172 hours to the basic hours lower
bound. It follows that 2s* can be added to the basic hours
lower bound. This gives a new hours lower bound of
84(i + ) + 16n + 14 (i + j) — 24n = 98 (i + {) — 8n.

Boxes 7, 8. Here, 84 (i + ) + 16n is an hours lower
bound. By Constraint 3, so is 40n. Hence, if 84 (i + )
+ 16n < 40n, i.e., 7(i + §) < 2n, we use 40n as our hours
lower bound. Otherwise, we try to improve on the basic
bound.

Boxes 9, 10, and Fig. 3. If j = 0 when we reach Box 9,
then it may be possible to improve on the basic bound
84i + 16n. There are Ti passes, and all are tracked dur-
ing the first half of the day. Each 12-hour tracking inter-
val is isolated from the others on that station’s sched-
ule. Since shifts are 8 or 10 hours, each interval must
touch at least 2 shifts. and no shift touches more than
one interval. It follows that each of the 7i tracking inter-
vals accounts for at least 16 crew hours. Accordingly,
(71) (16) = 112i is an hours lower bound. If 7i < 4n, then
84i + 16n > 112i; we keep the basic bound. If 7i > 4n
then 112i is a better bound.

Boxes 11, 12, and Fig. 3. If i = n at Box 11, then the
tracking schedule may still be forced to have so many
isolated intervals that the basic hours lower bound
84 (i +j) + 16n = 100n + 84j can again be improved
upon. The argument is more complicated; it is necessary
to consider each station separately. All stations track dur-
ing the first half of the day, and n —{ of them have a
“gap” (are not tracking) during the second half of the
day. The entire tracking schedule has 7 (n — §) gaps, and
if this number is large enough compared with n, some
stations are forced to have 6 or 7 gaps: If 7(n —j) > 6n,
i.e., n > Tj, then at least one station has 7 gaps, other-
wise the number of gaps would be at most 6n. If 7 (n — §)
> 5n, e, 2n > 7j, then at least one station has at least
6 gaps. We will elaborate on this later.
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Let us investigate the consequences of 7 gaps in the
tracking schedule of a station. The schedule is the same
as the right side of Fig. 5, except for a rotation. There
are 7 isolated tracking intervals. As the argument for
Box 10 shows, these intervals touch at least 14 crew shifts,
which account for at least 8 (14) = 112 crew hours. This
is 12 more than the 7(12) -~ 16 hours contributed by this
station to the basic hours lower bound.

If a station has 6 gaps in its schedule, then this sched-
ule looks like the left side of Fig. 5. There are 5 isolated
tracking intervals, which touch at least 10 shifts, which
account for at least 80 crew hours. There are 3 other
tracking intervals, which account for at least 36 more
crew hours. Accordingly, this station accounts for at least
116 crew hours, which is 4 more than the 8(12) + 16
hours contributed to the basic hours lower bound.

Consider now Case (n,j), n. There are 7(n — j) gaps; let
the kth station have g, gaps, where 1 < g, <7. Without los-
ing generality, we can assume g, > g > - > g, If
@ =7, then set ¢, = 12 (12 crew hours over the basic
bound). If g, = 6 set ¢, = 4. If g = 5 set ¢, = 0. There
is a choice of the g that minimizes X c; subject to the
constraint ¥ g, = 7 (n — ). This minimum we call “extra,”
and the new hours lower bound is 100n + 84j + extra.

PROPOSITION 3. Let i = n, 7(i + j) < 12n. Then

extra = 0 it 7/ > 2n
extra = 8n — 28§ ifnl7<2n
extra = 12n — 56f it 7j < n.

We have relegated the proof to Appendix A.

The only case in the lower 48 such that i =n, j >0,
and extra > 0 is Case (4,1), 4. There are 7(4 — 1) = 21
gaps, and the distribution of gaps that minimizes = ¢y is
6,5,5,5. Therefore, extra = 4.

Box 13. The basic hours lower bound is sharp for the
lower 48 cases that reach this place in the flow chart.

Box 14. Let h be an hour’s lower bound. To compute
a cost lower bound, we must find a string of work weeks
40 + 2x,, 40 + 2x,, - -+, 40 + 2x,, (x; = 0,1,2,3,4; m not pre-
determined), such that the total crew time = (40 + 2x;) =
40m - 23x; is at least h, while the cost 3, (40 + (5/2) x;) =
40m + (5/2) 3x; is minimized. At this point we need only
work with the two numbers m and 23x;. It will suffice to
give two examples from the lower 48 cases.
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Case (3,1), 3. Here h = 384. Since 8§ (48) = 384, at
least 8 crews are needed. If 8 crews are used, the cost is
8(50) = 400. If 9 crews are used, then there are 9 (40) =
360 regular hours and at least 24 overtime hours. The
minimum cost of 9 crews is then 360 + (5/4) 24 = 390.
If 10 or more crews are used, the cost is at least 10 (40) =
400. Therefore, a cost lower bound is 390.

Case (2,1), 4. Here h = 3186. Since 6 (48) < 316, at least
7 crews are needed. If 7 crews are used, the cost is at
least 7 (40) -+ (5/4) 36 = 325. If 8 crews are used, the cost
is at least 8 (40) = 320, which is therefore a cost lower
bound. Notice that it pays to waste 4 crew hours.

Occasionally, the solution for m and Sx; is not unique.
See, for example, Case (1,1), 4.

Box 15. We have obtained the number of crews m and
the overtime hours 25x; that achieve the cost lower
bound. Before one attempts to construct a schedule that
costs just this much, it may be helpful to list all the ways
that these overtime hours can be distributed among the
m work weeks (with the work weeks in non-increasing
order, for example). For example, in Case (1,1), 1 we have
m=4, x, ~x, + x, + x, = 7. The list of ways to write
7 as the sum of four non-increasing integers between 0
and 4 is 4+3+0+4+0, 4+2+1+0, 4+1+1+1,
3+84+140,8+2+2+0,3+2+1+1,2+2+2+1.
These yield the following work week splits:

48, 46, 40, 40
48, 44, 42, 40
48, 42, 42, 42
46, 46, 42, 40
46, 44, 44, 40
46, 44, 42, 42
44, 44, 44, 42

V. Construction of Schedules (Figure 4, Box 16)

If this is the first time we have come to this box, then
we have a list of work-week splits with cost equal to a
cost lower bound. We can do no more than give some
imprecise guidelines for constructing a weekly schedule
that uses one of these splits.

First, we make a tracking schedule that satisfies Con-
straint 4 and tracks p passes. In doing this, we avoid iso-
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lated tracking intervals as much as possible, for as we
saw in the discussion of Boxes 10 and 12, each interval
forces at least 4 hours of non-tracking crew hours, which
are either spent on maintenance or wasted. If there are
4 isolated intervals at a station, then we can adjoin a
4-hour block of maintenance to each and cover the result-
ing 16 hours of work by two 8-hour shifts. If there are
fewer than 4 isolated intervals at a station, then there is
more freedom in assigning maintenance. If the algorithm
has gone through Boxes 10 or 12, then we know how
many isolated intervals we have to handle. Otherwise,
we hope that we can get by with 4 or fewer per station.
This is so for the lower 48 cases, but if we run into a
casc that requires more isolated intervals (and can prove
that it docs), then we can add something to the basic
hours lower bound and go back to Box 14.

Next, we assign 16 hours of maintenance to each sta-
tion while observing Constraints 5 and 6. The proof of
Proposition 1 tells how to start. If a station is tracking
fewer than 13 passes, so that maintenance can be disjoint
from tracking, then, as a general rule, we try to assign
maintenance so that the duty intervals of tracking plus
contiguous maintenance have lengths which are multi-
ples of 8 hours. Such an interval can be covered tightly
by 8-hour shifts, which are easier to work with. If the
length of a duty interval is an odd multiple of 4 hours
and is at least 20 hours, then two 10-hour shifts plus some
8-hour shifts will cover it tightly.

Finally, we assign crew shitts. There is a list of work
week splits (Box 15). Each work week can be split in turn
into 8- and 10-hour shifts, perhaps in more than one way.
We try to choose a work weck split and shift splits so that
there are just enough 10-hour shifts to suit the tracking
and maintenance schedule. We give names a, b, ¢, - to
the crews, and show the shift split for each, On the sched-
ule, we show where the 8- and 10-hour shifts are to go.
Then the shifts are labeled with crew names such that
Constraint 2 (especially the 24-hour part) is satisfied. For
all the lower 48 cases, this can be done by labeling from
top down, then left to right. (We must make sure that
the 10-hour shifts are labeled correctly.) It may then hap-
pen that the end of this week and the beginning of the
next week violate the 24-hour constraint. If so, we try
to remedy the situation by juggling the labels. For the
lower 48 cases, this works.

At any point, it may be necessary or convenient to go
back and choose a different shift split, work week split,
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maintenance schedule, or tracking schedule, and proceed
again from there.

The scheduling process is really quite easy, for most
of the thinking has been done by the time a good cost
lower bound is derived. There scems to be considerable
leeway in the construction of schedules; the first or sec-
ond choice usually works. We were initially successful
in all lower 48 cases (except for Case (4,1), 4; see the
remark at the end of Section VI), and thus made it to
Box 17 (cheapest schedule found).

VI. Improving the Bound (Figure 4)

Figure 4 is a guide to follow in case we cannot con-
struct a schedule whose cost equals the cost lower bound
we have on hand. The reason for this failure may be either
that no such schedule exists, or that we have not been
persistent or clever enough. By Proposition 1, it is pos-
sible to make some schedule that tracks the greatest
possible number of passes. We do this as cheaply as we
are able (Box 18). The cost of the schedule so made is
an upper bound for the cost of a cheapest schedule.

If we cannot prove that our cost lower bound can be
increased, then we leave the flow chart by way of Box 21
with upper and lower bounds for the cost of a cheapest
schedule. If we can prove that there is a greater lower
bound, we do so (Box 20). Then we try to make a sched-
ule that achieves this new bound (Box 16). Thus we go
around the loop (a finite number of times) until we achieve
an exit through Box 17 or are forced out through Box 21.

Case (4,1), 4 drove us once around the loop; the cheap-
est schedule we could make exceeded our lower bound
by 4 hours. This forced us to make the argument associ-
ated with Box 12; the lower bound increased by 4 hours;
so we made it to Box 17. Of course, the improvement is
now part of the algorithm.

The FLAG device is merely a way of avoiding a double
exit from the loop; the entire flow chart follows the rules
of structured algorithms, the proposed DSN standard for
software.

VII. Proposed Changes in the Model

We have assumed that rises and sets of spacecraft are
synchronized with each other modulo 12 hours. If we
remove this constraint, the spacecraft passes could have
lengths other than 12 hours, and rises would no longer
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need to coincide with the starts of half-days. Perhaps
some randomness could be built in. This modification
would introduce more parameters into the problem.

Some of the labor constraints may have to be tightened.
The International Brotherhood of Electrical Workers/
Philco-Ford Corporation Labor Agreement requires that
cach shift have a regular start time, that overtime be
equalized among the crews, and that days off be consecu-
tive. Exceptions to these rules can occur, but each such
exception must be negotiated between the company and
the union.
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The cost function of the problem may need modifica-
tion. For example, we have assumed that no overtime be
paid for a work week of four 10-hour shifts. The Walsh-
Healey Act requires that any business with a government
contract pay overtime to non-exempt employees for hours
worked in excess of 8 in a given work day. Philco-Ford
Company policy requires that time and a half be paid to
exempt employees for scheduled time in excess of 8 hours
in a given work day. (A bill has been introduced in the
California Legislature to repeal the State overtime re-
quirement on 10-hour days, but the Federal would still
control.)
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Fig. 1. A crew schedule that fills the week
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Appendix A

Proof of Proposition 3

Let nobe a positive integer, j a nonnegative integer
such that 7j < 6n. (Actually, we know 7j < 5n.) Define a
function ¢ by

clg) =12, itg=T
=0, otherwise

Consider the problem
1]
Find M = minimum 3, ¢ (g,)
ko
subject to the constraints

(1) g an integer, 1 < g, <7 (k=1,--,n)

@ @ T

Aot

The solution is

M=0 it7j > 2n
- 8n — 28j ifn <7 <2n
—12n - 56j it7j<n

Proof
Let 7j > 2n. Then
n<7(n-—j<sn

Accordingly, g,,--+, g, can be chosen between 1 and 5 to
add up to 7(n — §).

Let n <7j < 2n. Then 7(n —j) > 5n; we need some

6s or 7’s. Suppose that m of the g, are 7. Then the re-
maining n—m ¢ add up to T(n—j—m) and are
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between 1 and 6. Suppose
T(n—j—m)>5(n—m)
Then at least T(n ~j—m) —5(n—m) = 2n ~T7j - 2m
6’s are needed, for otherwise the sum of the n — m terms

is less than 7(n — j — m). In this case (with ¢; = ¢ (g))),

N> 12m 4 4(2n — Tj — 2m) = 8n
> 8n - 28] = 4 (2n — 7))

- 28j + 4m

Suppose on the other hand that
T(n~—j—m)<5(n-—mn)

Then 2Zm > 2n — 74, no 6's arc needed, and

Nep > 12m > 120 - 42 = 6(2n — 7)) > 4 (2n — T})
since 2n — 7j > 0. In cither case, Y¢; > 8n — 28j, and this
bound can be achieved by using no 7’s, 2n — 7j 6’s, and
the remaining 7j — n g, equal to 5.

Let 7j < n. Then at least n — 7j T's arc needed. Suppose
in fact that n — 7/ + r T’s are used. The remaining 7j — r
@ add to 7(n—{) — 7(n—Tj + r) = 42j — Tr. Suppose

42j — Tr > 5(7j — r). Then at lcast 42f — 7r — 5(7j —r) =
7j -~ 2r of these g, must be 6. In this case,

Nep>12(n = Tj+ 1)+ 4(T) - 20)
= 12n — 36j -+ 4r > 12n — 56

On the other hand, if 42j — 7r <5(7j — 1), then 2r > 7j,
no 6’s are neceded, and

Yep > 12(n — T A r) > 12n —~ 84f + 42f = 12n — 424

In either case, X¢, > 12n — 56j, and this bound is
achieved by using n — 7j 7’s and 7 6.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21



Appendix B

Table of Minimum Costs for the Lower 48 Cases

Figure B-1 gives the minimum cost for each of the lower  possible to track all spacecraft passes, then a “1” or a “3”
48 cascs. For cach casc we enter the minimum cost and the s entered. A “1” means that either i or j is greater than n.
“slack,” defined by slack = minimum cost — (12p + 16n), (See Box 1 of Fig. 2.) A “3” means that the case runs into
where p is the maximum number of passes that can be the constraint that no station can track 14 passes a week
tracked, and 16n is the required maintenance. If it is not (Box 3 of the flow chart).
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ENTRIES: MINIMUM COST/SLACK®

Gri
’ (0, 0) (1,0 2,0 a,m (3,0 @M 4, 0 G 2,2 (5, 0) (SR (3, 2)
n
40 120 120 177 /23| 120 177.1/2/3| 120 1771/2,/3(177 /23| 120 1771/2/3(177 1/2,3
] 24 20 |1 20 51/2|1 20 (175172117 20 |1 /51/2|1 /5121 20 11 51/2(1 /51/2
) 80 120 230 200 230 285 230 285 55 /3| 230 285 355 /3
48 4 30 0 |1 30 1T [ %0 1 n 30 |1 11 n
R 120 135 230 220 340 305 340 390 390 340 390 475
72 3 14 4 40 5 1/ 40 6 6 40 |1 6 7
160 160 240 240 340 320 450 400 400 450 490 485
) 96 12 8 8 24 4 50 0 0 1 50 6 1

9SLACK = COST - (TRACKING + MAINTENANCE)

Fig. B-1. Minimum cost of lower 48 Cases
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Appendix C

Minimum Cost Schedules for the Lower 48 Cases

For each case, the stations are named A, B, C, D and
the crews a, b, ¢, --. The shift split of each crew is given,
The days of the week run from Monday to Sunday,
although this is arbitrary. Monday is repeated at the right
end of the schedules. An interval of tracking is shown by
a solid line; we do not bother to state which spacecraft
is being tracked. Maintenance is shown by dashed lines.
Below the tracking and maintenance schedules for a
station we put the crew shifts. Each 10-hour shift is
indicated by a superscript; otherwise it is 8 hours. Occa-
sionally the minimum cost can be achieved with more

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

than one value for crew hours. When this happens, we
give an alternate crew schedule by using Greek letters
o, 8,7, -. An example is Case (1,1), 4.

A flow chart box number, which refers to Fig. 2, shows
which path the cost lower bound algorithm takes. If
Box 10 or 12 is cited, then the next number in paren-
theses refers to the box numbers in Fig. 3.

The cases with i > n or j > n are omitted because they
reduce to other cases. (See Box 1, Fig. 2.)
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CASE (0, 0), 1. BOX 8. a: 5(8)

DAY

MON TUE WED THU FRI SAT SUN MON
STATION

A N b — -

CASE (0, 0), n. BOX 8

n COPIES OF THE ABOVE SCHEDULE

CASE(1, 0}, 1. BOX10(2). a, b, c: 5(8)

] ] [ [ | | }
A al b T& b| ¢ a| b cl a b ¢ Voﬂi—‘b c|lal|b

CASE (1, 0), 2. BOX 10(1), a, b, c: 5(8)
A alb cl a alb b ¢ al|b
B c|a b b c cl a
CASE (1, 0), 3, BOX 10(1). a: 5(8). b: 3(8) + 2(10). c: 6(8)
7] 6] 6] 4]
A c| a p'0 ¢ c |10 ¢l a
B b | ¢ ‘[V a al| b

CASE (1, 0), 4, BOX 8. a, b, ¢, d: 5(8)

* [ Bo pof
c T T

Fig. C-1. Minimum cost schedules for the lower 48 Cases
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CASE (2, 0), 3. BOX 10(2). a, b, c: 6(8). d, e: 5(8)

DAY MON TUE WED THU FRI SAT SUN MON
STATION
A B i « l__ L_
al c d | a c | e a|c e| b al|c
5 _ _ p |._
d ‘ b el b d|a b ‘ d al| ¢ d| b
c 1 2 i )
alc e| b c| e b | d
CASE (2, 0), 4. BOX 10(1). a, b, c, d: 6(8). e: 5(8)
a, B, 7, 8, ¢L: 5(8)
A a cﬁ d u_ c eA b d_ a c_
a Y Y| € a Y € a ap
8 b d~ e b— e b— c e- b d‘
Bl d €| a 3| ¢t LB AR
C ale< | aTa | ale | aTe |
L1 B B3 Yice B8
b) Eld|e|bld|
S| 8lalr]| e
CASE (1, 1), 1. BOX 3. a: 6(8). b, c, d: 4(8) + 10
X I - [ Tl ] |
blaleljd|alb c}'d a p'0 dellgi blc|ldla|b|lc|lal|d]|b]|a
a
CASE (1, 1), 2. BOX13. a, b, ¢, d, e: 5(8)
- [ — | | 1
al b |le|c a|bj|e b} e { c cldle|la]|b
e [ | | —
c|d alb|e c|d|a dialb cid
CASE (1, 1), 3. BOX 13, a, b: 6(8). ¢, d, e: 5(8)
R P N N [ I
a b] c{d| a d| a (c blci|d al|l b
. | ] l
el blc|d|a d|e|a
c b o —
e| b| e e—{ b a| ble

Fig. C-1 (contd)
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CASE (1, 1), 4. BOX13. o, b, ¢, d: 6(8). e: 5(8)
Qe Broye €08, 02 5(8)
PAY 1 mon TUE WED THU FRI SAT SUN MON
STATION l
[ 1]
A al b dTe bie ‘ blec
ajB [ Y18 Cl a [ v |e | a| B lrx
B al b|e ;T;— d e a
elal|B |y e] { a B|7r ]
c a I b ‘ ETZ_ blcld
8| tlalB IS 5 |8
D a l b I c 'ETZ'
ylel|E]B|8
CASE (3, 0), 3. BOX 10(2), a, b: 6(8). ¢, d, e, f, g, h: 5(8)
N ] 1] [ ] | | | []
al d g I b e I h c| f a|d b ‘ g l h a|d
. L. I ] I I J | |
b \ e h| e fl|la d 1 g b ‘ e hle l f b | e
15 ; I 5
¢ c| f a l d g I b e } h c| f a|d b l g c [ f
CASE (3, 0), 4. BOX 10(2), a, b: 6(8)., c,d, e, f, g, h: 5(8)
. ] | I L 1 [
a| d e ] h c| f e | d e| h a | d
. I 1] [ 1] | i
bie g ] b d ‘ g bie b ] g b| e
1] 1] [ [ ] J [
¢ c| f hie floa ‘ f h|e a l f c| f
- | N
ald gj b l h ol d b ! 9
CASE (2, 1), 2. BOX12(1). a, b: 4(8) + 10, ¢, d, e, f, g: 5(8)
N [ L1 ] 1] [ ] l [
dlf a bld‘{f alc|e f‘a dlf um‘bm flal|c dIf a
. N [ ] l [ [ [
e | g c e l g| b|d g} b I cle I 9 c { d|e gTb el g
CASE (2, 1), 3, BOX 13, a, b: 6(8). c: 3(8) +2(10), d, e, f, g: 5(8)
- - I |
cleib|c]a a|d 1 g ] fla { d clejb
. ] l [_] ] 1] [
d|a cm]flb]e C]O flajc elg d]u
. LT [] ] [ l
flilg ‘ d } bie|g ble|lc|g l bjdjf|lal|b

Fig. C-1 (contd)
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CASE (2, 1), 4. BOX13. a, b, ¢, d, e, f, g, h: 5(8)

DAY
STATION

< T Tﬁﬂ_ qliL, f 1IL ['L
Sl Srin B non Mo sl Bl A GG GHE
c 0L TFLI;C
: ol nar

CASE (4, 0), 4. BOX10(2), a: 6(8). b, ¢, d, e, f, g, h, i, j, k: 5(8)

MON TUE WED . THU FRI SAT SUN MON

Q

@

=T

1] [ L [ ] l ]
A ale i[b f[] clg Tle a—[h e}i TI'—eL
[ [ I ] | | l |
B b!f il slk dln ale i[b flj b[f
L [ [ L] l | [T
¢ Clg k[d h|aij e| i b[f j[c Q[k 019
[ ] i [ ] | ] J
P d[h ale ilb flj c]g kld alh d[h
CASE (3, 1), 3. BOX 12(1). a, b, c: 6(8). d: 4(10). e, f, 3, h, i: 5(8)
[ [ L] | }] ] | l
A alelh in gli clgla b}f aTc c|h nle h
1] [ L l 1] [ ] I}
* [Tr] [P0 ] [Ffel] L RT
H L Fi H | B
¢ glec ale h[alb £ elh dm(flgld]o 9| c

CASE (3, 1), 4. BOX 13, a, b, ¢, d, e, f, g, h, i, j: 5(8)

o
-
o L
-
Q
o o
o

i

>
a L
®

] ] | |

i i h

: g s o S
ile| [e]i] [4]e] o] [¢]

CASE (2, 2), 2. BOX 3

TWO COPIES OF THE CASE (1, 1), 1 SCHEDULE

Fig. C-1 (contd)
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CASE (2, 2), 3. BOX13. o, b, c: 6(8). d, e, f, g, h, i: 5(8)

DAY MON TUE WED THU FRI SAT SUN MON
STATION .
O S S [
\ce gIa f‘ic elhlb acebtg‘i c|e
l - l I I l
B bld’f h’b’d gqu f‘i cd‘f‘h oclh bldlf
] D S |
| ‘ hlbld gTa elgli b]d]f

CASE (2, 2), 4, BOX 13
TWO COPIES OF THE CASE (1, 1), 2 SCHEDULE

CASE (4, 1), 4. BOX12(2). d: 4(10) + 8. 1. 4(10). a, b, c, e, f, g, h, i, j: 5(8)

T LTl [T T G| L
Moninklionkeant Eooionlce

polosipniodigtnopnnmen
i Bng innEnalAnRE:

CASE (3, 2), 3, BOX 12(1). a, b, c: 6(8). d: 3(8) + 2(10). e, f, g, h, i, js k: 5(8)

|

A~ -
L

9

T
o)

—

: u\«}\g T[T T \'L SEDABNE
B htb]ekcfiu‘[;‘g‘jacflh k}« h‘ khlbe

1 I I I 1 [ __]
¢ Tﬁ[. a\dlolg}j‘demlh d{gli a‘d{f al f cTi

] L~ l [ L] |
SconIRHAERRARANNNAGEBAE
SlcnnnsH Il EEoacnna il S0
diprinononn I oalinnonaoaae
D TTTATT [T BhT

Fig. C-1 (contd)
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